Personality in Science
Nanotechnologies
R&D Projects
News Of Science
Engineering
International Research & Education
Science & Technology Articles
MRC.ORG.UA

MRC SCIENCE AND TECHNOLOGY
R&D PROJECTS PERSONALITY IN SCIENCE International research and education Methods of testing and research Standardization and Certification NANOTECHNOLOGY NEW ENERGY SCIENCE AND TECHNOLOGY ARTICLES


MRC ENGINEERING AND MANUFACTURING
ABOUT US PRODUCTS DESIGN PRODUCTION GALLERY VIDEO ARTICLES PARTNERS VACANCIES SITEMAP

Follow us:



JOURNAL "DOM"
NEWS OF SCIENCE NEWS OF ENGINEERING

Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films
Transparent Conductive Two-Dimensional Titanium Carbide Epitaxial Thin Films
Since the discovery of graphene, the quest for two-dimensional (2D) materials has intensified greatly..


Joseph Halim, Maria R Lukatskaya, Kevin M. Cook, Jun Lu, Cole Smith, Lars-Åke Näslund, Steven J. May, Lars Hultman, , Per Eklund, and Michel W. Barsoum

Abstract

Since the discovery of graphene, the quest for two-dimensional (2D) materials has intensified greatly. Recently, a new family of 2D transition metal carbides and carbonitrides (MXenes) was discovered that is both conducting and hydrophilic, an uncommon combination. MXenes were produced as powders, flakes and colloidal solutions. Herein, we report on the fabrication of ~ 1x1 cm2 Ti3C2 films by selective etching of Al, from sputter-deposited epitaxial Ti3AlC2 films, in aqueous HF or NH4HF2. Films that were about 19 nm thick, etched with NH4HF2, transmit ~ 90% of the light in the visible-to-infrared range and exhibit metallic conductivity down to ~100 K. Below 100 K, the films resistivity increases with decreasing temperature and they exhibit negative magnetoresistance; both observations consistent with a weak localization phenomenon characteristic of many 2D defective solids. This advance opens the door for the use of MXenes in electronic, photonic and sensing applications.

Published: Chem. Mater., Just Accepted Manuscript DOI: 10.1021/cm500641a Publication Date (Web): February 28, 2014, American Chemical Society

Read more about 2D transition metal carbides

 
< .   . >

MRC ltd. / Kiev MATERIALS RESEARCH CENTRE    
www.dom.ua    

Science
26.08.2017 02:57
Drexel researchers have developed a recipe for self batteries
MXene
Researchers described a process by which nanodiamonds tiny diamond particles 10,000 times smaller than the diameter of a hair curtail the electrochemical deposition, called plating, that can lead to hazardous short-circuiting of lithium ion batteries...
 
04.06.2017 23:47
Professor Yury Gogotsi was speaking about nanotechnology in energy storage at the World Science Fest
MXene
Join world-class nanoscientists and environmental leaders to explore how the capacity to harness molecules and atoms is accelerating spectacular inventions including light-weight wonder materials, vital energy-storage technologies, and new sources of renewable energy which promise to redefine the very future of energy...
 
04.06.2017 23:39
MXenes discovered by prof. Yury Gogotsi are at the forefront of 2D materials research
MXene
Its been just over five years since researchers in Drexels Department of Materials Science and Engineering reported on a new, two-dimensional material composed of titanium and carbon atoms, called MXene...
 
11.02.2017 18:56
MATERIAL WITNESSES RESEARCHERS AROUND THE WORLD ARE DELVING INTO DREXELS 2D MXENE
MXene
Its been just over five years since researchers in Drexels Department of Materials Science and Engineering reported on a new, two-dimensional material composed of titanium and carbon atoms, called MXene...
 
 Contact information
MRC Ltd. Materials research centre
Kiev, Krzhizhanovskogo, 3
Tel.: +38 (044) 233-24-43
Tel.: +38 (044) 237-71-87
Fax: +38 (044) 502-41-49
E-mail:
We work: Mon - Sat 10:00 - 18:00
 Creative Commons

Photos of the projects implemented by MRC TM "", as well as articles and videos are published under the Creative Commons Attribution with preservation of terms
(Attribution-ShareAlike) 3.0 Unported. You can freely copy, distribute, modify the materials with link to the author.

  
name=Contacts face= 0.2